Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 42(45): 8524-8541, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36167783

RESUMO

Autophagy and endocytic trafficking are two key pathways that regulate the composition and integrity of the neuronal proteome. Alterations in these pathways are sufficient to cause neurodevelopmental and neurodegenerative disorders. Thus, defining how autophagy and endocytic pathways are organized in neurons remains a key area of investigation. These pathways share many features and converge on lysosomes for cargo degradation, but what remains unclear is the degree to which the identity of each pathway is preserved in each compartment of the neuron. Here, we elucidate the degree of intersection between autophagic and endocytic pathways in axons of primary mouse cortical neurons of both sexes. Using microfluidic chambers, we labeled newly-generated bulk endosomes and signaling endosomes in the distal axon, and systematically tracked their trajectories, molecular composition, and functional characteristics relative to autophagosomes. We find that newly-formed endosomes and autophagosomes both undergo retrograde transport in the axon, but as distinct organelle populations. Moreover, these pathways differ in their degree of acidification and association with molecular determinants of organelle maturation. These results suggest that the identity of autophagic and newly endocytosed organelles is preserved for the length of the axon. Lastly, we find that expression of a pathogenic form of α-synuclein, a protein enriched in presynaptic terminals, increases merging between autophagic and endocytic pathways. Thus, aberrant merging of these pathways may represent a mechanism contributing to neuronal dysfunction in Parkinson's disease (PD) and related α-synucleinopathies.SIGNIFICANCE STATEMENT Autophagy and endocytic trafficking are retrograde pathways in neuronal axons that fulfill critical degradative and signaling functions. These pathways share many features and converge on lysosomes for cargo degradation, but the extent to which the identity of each pathway is preserved in axons is unclear. We find that autophagosomes and endosomes formed in the distal axon undergo retrograde transport to the soma in parallel and separate pathways. These pathways also have distinct maturation profiles along the mid-axon, further highlighting differences in the potential fate of transported cargo. Strikingly, expression of a pathogenic variant of α-synuclein increases merging between autophagic and endocytic pathways, suggesting that mis-sorting of axonal cargo may contribute to neuronal dysfunction in Parkinson's disease (PD) and related α-synucleinopathies.


Assuntos
Doença de Parkinson , Sinucleinopatias , Animais , Camundongos , Masculino , Feminino , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Axônios/fisiologia , Neurônios/fisiologia , Autofagia/fisiologia , Lisossomos/metabolismo , Endossomos/metabolismo , Transporte Axonal
2.
J Cell Biol ; 220(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33783472

RESUMO

Macroautophagy (hereafter "autophagy") is a lysosomal degradation pathway that is important for learning and memory, suggesting critical roles for autophagy at the neuronal synapse. Little is known, however, about the molecular details of how autophagy is regulated with synaptic activity. Here, we used live-cell confocal microscopy to define the autophagy pathway in primary hippocampal neurons under various paradigms of synaptic activity. We found that synaptic activity regulates the motility of autophagic vacuoles (AVs) in dendrites. Stimulation of synaptic activity dampens AV motility, whereas silencing synaptic activity induces AV motility. Activity-dependent effects on dendritic AV motility are local and reversible. Importantly, these effects are compartment specific, occurring in dendrites and not in axons. Most strikingly, synaptic activity increases the presence of degradative autolysosomes in dendrites and not in axons. On the basis of our findings, we propose a model whereby synaptic activity locally controls AV dynamics and function within dendrites that may regulate the synaptic proteome.


Assuntos
Autofagia , Movimento Celular , Dendritos/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Vacúolos/fisiologia , Animais , Autofagossomos/fisiologia , Axônios/fisiologia , Hipocampo/citologia , Lisossomos/fisiologia , Camundongos , Neurônios/citologia , Ratos , Ratos Sprague-Dawley
3.
Autophagy ; 16(9): 1651-1667, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31876243

RESUMO

Macroautophagy/autophagy is a key homeostatic process that targets cytoplasmic components to the lysosome for breakdown and recycling. Autophagy plays critical roles in glia and neurons that affect development, functionality, and viability of the nervous system. The mechanisms that regulate autophagy in glia and neurons, however, are poorly understood. Here, we define the molecular underpinnings of autophagy in primary cortical astrocytes in response to metabolic stress, and perform a comparative study in primary hippocampal neurons. We find that inducing metabolic stress by nutrient deprivation or pharmacological inhibition of MTOR (mechanistic target of rapamycin kinase) robustly activates autophagy in astrocytes. While both paradigms of metabolic stress dampen MTOR signaling, they affect the autophagy pathway differently. Further, we find that starvation-induced autophagic flux is dependent on the buffering system of the starvation solution. Lastly, starvation conditions that strongly activate autophagy in astrocytes have less pronounced effects on autophagy in neurons. Combined, our study reveals the complexity of regulating autophagy in different paradigms of metabolic stress, as well as in different cell types of the brain. Our findings raise important implications for how neurons and glia may collaborate to maintain homeostasis in the brain. ABBREVIATIONS: ACSF: artificial cerebrospinal fluid; baf A1: bafilomycin A1; EBSS: earle's balanced salt solution; GFAP: glial fibrillary acidic protein; Glc: glucose; GM: glial media; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; p-RPS6: phospho-RPS6; p-ULK1: phospho-ULK1; RPS6: ribosomal protein S6; SQSTM1/p62: sequestosome 1; ULK1: unc-51-like kinase 1.


Assuntos
Astrócitos/metabolismo , Autofagia , Neurônios/metabolismo , Estresse Fisiológico , Animais , Células Cultivadas , Camundongos Transgênicos , Neuroglia/metabolismo , Proteína Sequestossoma-1/metabolismo , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...